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Faraday waves are standing waves which arise through a parametric instability on the
surface of a vertically oscillated fluid layer. They can emerge with various symmetries,
simply square to N -fold rotationally symmetric, which for N > 3 are quasi-crystalline.
In an experiment with a very large aspect ratio we determine the boundaries of
the stability regions of waves with different rotational symmetries in the driving
frequency–amplitude parameter plane. We find a remarkable agreement with a recent
theory by Chen & Viñals (1999) who predict the stability boundaries at the onset
amplitude. We argue why such agreement can only be observed in a very large experi-
ment. The main nonlinear damping mechanism of the waves is a three-wave resonance.
We devise a simple model that captures this mechanism and that can explain quantita-
tively the change of the symmetry of the waves with fluid depth. Detailed information
about the surface is obtained by scanning the wave field and measuring the phase
of subharmonic and harmonic components. Also the results of these measurements
compare very favourably to the theoretical predictions.

1. Introduction
In 1831, Michael Faraday published a paper on the behaviour of granular material

on a vibrating plate. In the Appendix, he notes that when a fluid is placed on a
vibrating plate, it forms ‘crispations’ (waves) which are ‘usually arranged rectangularly
with extreme regularity’. He also notes that the frequency of the waves is half the
frequency of the vibrating plate.

His findings were confirmed by Lord Rayleigh, who, after papers by Matthiessen
(1868, 1870) in which it was stated that the waves oscillated at the same frequency
as the plate, performed his own experiments. Rayleigh (1883a, b) proposed that there
might be a connection to the Mathieu equation, which describes parametric resonance.
This suspicion was confirmed by the first linear stability analysis of a vertically
vibrating inviscid fluid layer by Benjamin & Ursell (1954). They showed that in a
non-viscous fluid, the amplitude of an eigenmode of the fluid layer obeys the Mathieu
equation.

The Mathieu equation supports solutions at both the frequency of the excitation
(harmonic), and at half this frequency (subharmonic). However, in the presence
of viscosity, the subharmonic response has smaller dissipation than the harmonic
response, and is therefore the one that is excited first.

Experiments performed by Benjamin & Ursell (1954) in a small container (only a
few wavelengths across) showed satisfactory agreement with their theory. However,
they found that the bulk dissipation could not explain the actual dissipation, which
they ascribed to dissipation at the contact line.
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A linear stability analysis was performed for viscous fluids of finite depth by
Kumar & Tuckerman (1994). Ensuing experiments showed excellent agreement with
their theory (Bechhoefer et al. 1995; Lioubashevski, Fineberg & Tuckerman 1997).
Kumar (1996) points out the possibility of observing the harmonic response at small
depth, owing to the large dissipation for long wavelengths in this case. The harmonic
response was indeed observed by Müller et al. (1997). It was perhaps this effect which
was observed by Matthiessen (1868, 1870).

Whilst Faraday observed standing wave patterns in a square arrangement, modern
experiments have revealed many other symmetries. If the dissipation is large (a
fluid with high viscosity), the preferred pattern consists of parallel stripes (Fauve
et al. 1992; Edwards & Fauve 1994; Daudet et al. 1995). Edwards & Fauve (1994)
have also pointed out the importance of the correlation length which determines
the influence of the shape of the container on the wave pattern. The square pattern
consisting of two perpendicular standing waves which Faraday observed is found at
high frequencies (Lang 1962; Ezerskii et al. 1986; Tufillaro, Ramshankar & Gollub
1989; Ciliberto, Douady & Fauve 1991; Christiansen, Alstrøm & Levinsen 1992;
Müller 1993; Edwards & Fauve 1994). At lower frequencies, a hexagonal pattern
consisting of three standing waves spaced at 120◦ was found by Kumar & Bajaj (1995)
and Kudrolli & Gollub (1996). Binks & van de Water (1997) have shown that a whole
series of patterns is formed if the container is large enough. Patterns found include
square, hexagonal, eightfold and tenfold rotationally symmetric, which consist of
N = 2, 3, 4 and 5 standing waves, respectively, with wave vectors spaced equidistantly
on the circle.

Much of the original experimental and theoretical work done in the 1980s focused
on small systems, in which the pattern is determined by the shape of the boundary
(Gollub & Meyer 1983; Miles 1984; Ciliberto & Gollub 1985; Meron & Procaccia
1986a, b; Simonelli & Gollub 1989; Feng & Sethna 1989; Miles & Henderson 1990;
Umeki 1991; Gollub 1991; Crawford 1991, 1993). In such systems, only one or a
few eigenmodes of the system are excited. The nonlinear dynamics of such systems
can often be reduced to a small set of ordinary differential equations which describe
the evolution of the amplitude of the eigenmodes. The interaction between modes
can give rise to low-dimensional chaotic dynamics, which has been found both
experimentally and theoretically (Ciliberto & Gollub 1985). In the 1990s, the interest
changed towards large systems, and many experiments were performed addressing
questions on pattern selection and chaotic behaviour in large systems (Ezerskii &
Rabinovich 1990; Ezerskii 1991; Ciliberto et al. 1991; Gollub & Ramshankar 1991;
Christiansen et al. 1992; Fauve et al. 1992; Bosch & van de Water 1993; Gluckman
et al. 1993; Ezerskii et al. 1994).

The amplitude description proved to be a very successful theoretical framework.
The assumption is that just above the threshold of the linear instability, the dynamics
is dominated by the slow evolution of the amplitudes of the linearly unstable
subharmonic modes. For the amplitudes Bn of N interacting standing waves, the
amplitude equation reads

dBn

dt
= sBn − g0B

3
n −

N∑
m=1
m�=n

g(Θnm)|Bm|2Bn, (1.1)

where s is the linear growth rate. The nonlinear saturation of the growth is of cubic
order with g(Θ) the coupling function that gauges the interaction of waves n, m with
an angle Θ between the wavevectors. The self-interaction, which involves g0, is written
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explicitly. Terms involving a quadratic nonlinearity B2 are absent as the amplitude
equation has to be invariant under the transformation B → −B . It is dictated by the
invariance of the dynamics of the pattern under a shift in time by one period of the
excitation, which corresponds to half a period of the linearly unstable waves. This
fundamental restraint is lifted when the system is perturbed with a second frequency
and transitions between squares, hexagons and triangles can be induced (Müller 1993),
however, in the present work we consider monochromatic driving only.

The challenge is to derive the coupling function g(Θ) from first principles, that
is, the Navier–Stokes equation together with the (free-surface) boundary conditions.
Once the coupling function is known, the preferred pattern can be obtained simply
from (1.1), as we will show later.

The first attempts to derive the coupling function g(Θ) were reported by Miles
(1984), Milner (1991), and Miles (1993) who assumed the fluid to be inviscid, in
which case the analysis is greatly simplified. The hope was that viscous effects could
be included in a phenomenological way as a perturbation. Milner (1991) obtained
an amplitude equation for the inviscid infinite-depth case, valid for purely capillary
waves. Although his theory does predict a square pattern above the threshold, the
calculation of g(Θ) contains infinities. It was suggested by Edwards & Fauve (1994)
that this is caused by resonant three-wave interactions. In the absence of viscosity,
the resonances grow to infinity.

A calculation which includes the effect of viscosity was performed by Zhang (1994)
and Zhang & Viñals (1996, 1997a, b). They use the fact that in the case of an infinite
system, viscosity only plays an important role in a thin boundary layer (also called the
vortical layer) near the free surface, while in the bulk of the fluid the flow is almost
completely potential. This leads to the so-called quasi-potential approximation, which
perturbatively incorporates weak viscous effects by introducing modified boundary
conditions at the free surface for the otherwise potential bulk flow. They obtained
a standing-wave amplitude equation valid for small viscous dissipation. However, in
order to make the problem analytically tractable, they neglected viscous terms with a
nonlinear dependence on either the surface displacement, or on the surface velocity.
Although the uncontrolled nature of this truncation makes it difficult to assess the
region of validity of the theory, their predictions for the stability boundaries of
different patterns agree quite well with our experiments (see § 4.3). Depending on
parameters, their theory predicts square, hexagonal, eightfold, and patterns of greater
rotational symmetry.

Clearly, the prediction of Zhang & Viñals (1996, 1997a, b) is only valid near
threshold and for small viscous dissipation. Hence, when we designed our experiment
to test the predictions of their theory, it needed to work with low-viscosity fluids. As
will be explained in § 2.4, this necessarily implied that the container size L must be
very large. Another reason to consider low-viscosity fluids is that they display much
more interesting patterns.

Experiments performed by Kudrolli & Gollub (1996) were in reasonable agreement
with the theory by Zhang & Viñals, but the eightfold pattern which was predicted by
the theory was not observed. As we will show in § 4.5, the discrepancy is due to the
small fluid depth used by Kudrolli & Gollub.

Chen & Viñals (1999) have presented a weakly nonlinear theory of pattern forma-
tion which is not restricted to small viscosity. As we will show in § 4.3, the agreement
of predictions by this theory with our experimental results is excellent. It is gratifying
that the improvement of the theory over that of Zhang & Viñals also leads to an
improved agreement with the experiment.
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The hydrodynamics of surface waves is complicated by a rotational component of
the flow. It was initially believed that the contribution of the corresponding term was
O(ν3/2) in the viscosity, whilst the irrotational part was O(ν). This is actually the case
in the linear theory. Hence, in the case of the linear stability analysis it is justified to
neglect the rotational flow component for small ν. However, for the weakly nonlinear
case, Chen & Viñals (1999) show that both contributions to g(Θ) are of order ν at
small ν. Therefore, we cannot obtain the correct form of the amplitude equation if
only the irrotational flow is considered.

Faraday surface waves, together with Rayleigh–Benárd convection, is one of the
few weakly nonlinear systems for which amplitude equations have been derived from
first principles, that is, the Navier–Stokes equations. The availability of a complete
weakly non-linear theory for Faraday waves makes the system an ideal test ground
for the applicability of the amplitude equation formulation.

In § 2 we will briefly review the amplitude description and illustrate it with plots
of the coupling function g(Θ) for our experimental situation. Next, we explain the
three-wave resonance, its intimate connection with the dispersion relation and devise
a simple model for g(Θ) that can explain the dependence of the pattern symmetry on
the depth of the fluid layer. We also explain why the experiment has to be so large.
In § 3, we describe the experimental techniques used.

So far, most of the measurements conducted in Faraday waves have focused mainly
on the stability boundaries of the different patterns. However, the theory also predicts
the spatial and temporal phase of the standing-wave field. Whereas a measurement of
the stability boundaries of patterns requires only qualitative information on the wave
field, for which a shadowgraph method suffices, it is much more challenging to obtain
quantitative information about the phases and amplitudes. In § 3.3 we describe a laser
refraction technique which provides a precise linear measurement of the surface slope.
In fact, because of the accessibility of the free surface, Faraday waves constitute one
of the few experiments in pattern formation where the instantaneous hydrodynamic
state is accessible.

In order to assess the accuracy of the experiment, we compare in § 4.1 and 4.2
the measured onset amplitudes and dispersion relations with the prediction of linear
theory. In § 4.3 we explore the phase diagram of pattern formation of our experiment
and compare the phase boundaries with those which are predicted theoretically. The
dependence on depth of the surface pattern is studied in § 4.5, it clearly exposes the
relevance of the three-wave resonance for nonlinear damping.

Detailed measurements of the amplitudes and phases of the subharmonic and
harmonic surface mode components are described in § 4.6. The results are compared
with the theory by Chen & Viñals (1999). We conclude that pattern formation of
weakly nonlinear Faraday waves is now well understood.

2. The amplitude description
The amplitude equation describes the nonlinear interaction of surface modes that

gives rise to patterns. It is instructive to illustrate the amplitude description (1.1) with
graphs of the coupling function g(Θ). As single-wavenumber standing-wave patterns
we only consider those where the wave vector directions are equally spaced on the
circle. These are also the experimentally observed patterns; they consist of sums of N

waves spaced at equal angles 2π/N . Here, N = 1 corresponds to a pattern of parallel
lines, N = 2 corresponds to two waves at a 90◦ angle (forming a square pattern), and
so on. The question then is which N is preferred at onset.
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Figure 1. (a) The coupling function g(Θ)/g0 at a fixed dissipation γ = 0.037 and for different
values of Σ . The value Σ =0 corresponds to a pure gravity wave, Σ = 1 corresponds to a pure
capillary wave. (b) Graph of g(Θ)/g0 for different values of the dimensionless dissipation γ ,
at Σ = 0.5. (1): γ = 0.073, (2): γ = 0.037, (3): γ = 0.018.

The computation of the coupling function is a daunting task, and we will show
the result by Chen & Viñals (1999). One slight inconvenience is that the coupling
function cannot be given in closed form and in order to arrive at results, they have
to rely on a symbolic manipulation package to keep track of a very large number
of terms that arise when all the terms in the original equations of motion are kept.
Nevertheless, several predictions for our experiment were made using software that
was kindly supplied by Chen & Viñals.

Before showing the results, we must introduce the dimensionless variables that are
pertinent to our problem. The inviscid dispersion relation reads

ω2
0 = tanh(k0h)

(
gk0 +

σ

ρ
k3

0

)
, (2.1)

where for infinite depth, tanh(k0h) can be set to one. Then, dividing by ω2
0, we obtain

G + Σ = 1, (2.2)

with G = gk0/ω
2
0 the contribution from gravity and Σ = σk3

0/ρω2
0 the contribution

from capillary forces to the dispersion relation. The case G = 1 corresponds to a
pure gravity wave, while Σ = 1 is a pure capillary wave. The fast time and length
scales are set by the driving frequency ω0 and the wavenumber which follows from
the inviscid dispersion relation. This readily leads to the dimensionless damping
parameter γ = 2νk2

0/ω0.
For N standing waves that are equally spaced on the circle with equal amplitudes,

each amplitude obeys

dB1

dT
= εB1 − g0B

3
1 −

∑
m�=1

g(Θm1)B
2
mB1, (2.3)

where ε is the normalized growth rate of the waves, ε = s/γω and Θm1 is the angle
between k1 and km.

To get a feeling for the shape of g(Θ), we have computed it in several regimes,
ranging from the limit of pure gravity waves Σ = 0, through the mixed gravity–
capillary regime, to the limit of pure capillary waves, Σ = 1. The results are plotted
in figure 1(a). When Σ is neither close to 0 nor close to 1, so when both surface
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tension and gravity are important, the coupling function has a resonance peak. As
we will discuss in § 2.1, this resonance peak is the result of a three-wave resonance
phenomenon. It may already be anticipated that the resonance peaks of the coupling
function g(Θ) play a key role in determining the preferred pattern. As with any
resonance, its sharpness is dulled when the viscous dissipation increases, which is
illustrated in figure 1(b) for several values of the dimensionless damping γ .

The amplitude equation which predicts the preferred pattern can be written in
gradient form, with the preferred pattern (that is, the symmetry N ) the one that
minimizes a Lyapunov functional. Since the form of the Lyapunov functional is an
important organizing principle for understanding patterns, we briefly describe it here.

First, note that (2.3) can be written in gradient form as

dBn

dT
= − ∂L

∂Bn

, (2.4)

in which L is the Lyapunov function given by

L = −1

2
s
∑

n

B2
n +

1

4

∑
m

∑
n

g(Θmn)B
2
mB2

n, (2.5)

where g0 = g(Θnn) which equals half the value of g(Θ → 0) (otherwise it would be
counted twice). From (2.4) and (2.5), it readily follows that L is a decreasing function
of time, therefore, the only possible asymptotic states have stationary amplitudes.
Necessarily, those states correspond to minima of the Lyapunov function. Considering
only regular patterns with wavenumbers spaced equidistantly on the circle, it is easy to
find the N -dependence of the Lyapunov function at stationary amplitude (dBn/dT = 0)

L(N ) = − s2

4g0

N

1 +

N∑
m=2

g(Θm1)

g0

. (2.6)

The minimum argument leaves aside the important question whether the resulting
patterns are actually stable with respect to spatial modulations of the amplitude.
This question was partially answered by Zhang & Viñals (1998), who show that
a numerical integration of the quasi-potential approximation of the Navier–Stokes
equation yields patterns that are stable with respect to spatial perturbations.

For our experiment, the computed phase diagram which is spanned by the
dimensionless damping γ and the dimensionless capillarity Σ , is shown in figure 2.
We see that the regions of preferred patterns show a beautiful nested structure in the
(Σ, γ )-plane. For high frequencies, the square (N =2) state is preferred. However, as
the excitation frequency is lowered, patterns of higher N come into view. The curves
of increasing N converge to the point Σ = 1/3. This behaviour will be explained in
§ 2.2.

In the Faraday experiment, we traverse the phase plane by scanning the driving
frequency. This corresponds to a trajectory in the (Σ, γ )-plane that is indicated by
a dashed line in figure 2. The trajectory is determined by the specific values for the
surface tension, density, and viscosity of the fluid that we use, and is such that Σ

increases monotonically with increasing driving frequency F .

2.1. Wave interactions

The cubic-order nonlinear damping of (2.3) is a three-wave interaction: two sub-
harmonic waves with frequencies ω1, ω2 (both equal to Ω/2) couple to produce a third,
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Figure 3. The shape of the dispersion relation determines the resonance angle. (a) dispersion
relation of decay type (see text). In (b), the solid line is a dispersion relation that scales as
ω ∝ k. The dashed line is of non-decay type.

harmonic wave with frequency ω3. Energy conservation demands that ω1 + ω2 = ω3,
whereas the wavevectors must satisfy momentum conservation k1 + k2 = k3. As the
third wave can now couple to the waves with ω1,2 to produce a wave with subharmonic
frequency Ω/2, it provides a sink of energy for that wave.

Not only must energy and momentum be conserved for the three interacting waves,
but for the energy transfer to be effective, also the dispersion relation must be obeyed,
thus

ω(k1) + ω(k2) = ω(k3). (2.7)

When does resonance occur? The first ingredient is the angle between two linearly
unstable modes. The frequency of the nonlinearly generated mode is fixed at 2ω0, but
by varying the angle Θ between the primary waves, the wavenumber k3 can be varied.
The second ingredient is the shape of the dispersion relation. Figure 3(a) shows how
the shape of the (convex) dispersion relation determines the resonance angle ΘR .
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If Θ = ΘR , the wave k3 has a wavenumber that satisfies the dispersion relation at
frequency 2ω0.

Figure 3(b) shows two dispersion relations in which the drawn line scales as ω ∝ k,
while the concave dashed line scales as ω ∝ kp with p < 1. In the case of the linear
scaling ω ∝ k, the resonance angle Θ =0, and the waves k1 and k2 have to be parallel
to each other. If the scaling exponent p is smaller than one, meaning that the
dispersion relation is concave, the waves k1 and k2 cannot add up any more to the
desired wavelength, and three-wave resonance is not possible.

Dispersion relations which scale as ω(k) ∝ kp with p > 1 (convex) are referred to
as decay type and allow resonant three-wave interactions, whereas if p < 1 (concave)
the dispersion relation is said to be of non-decay type†. For pure gravity waves, the
dispersion relation is ω = (gk)1/2, so gravity waves are of non-decay type. However,
for pure capillary the dispersion relation is ω = (σ/ρ)1/2k3/2, so capillary waves are of
decay type. The change of the dispersion relation from non-decay to decay type with
increasing frequency (corresponding to a change from concave to convex) has great
implications for the pattern formation, as we will see shortly.

The waves with ω0 = Ω/2 and k0 satisfy the inviscid dispersion relation G + Σ =1.
For other waves, ω∗ = ω/ω0, k∗ = k/k0, it becomes

ω∗2 = Gk∗ + Σk∗3. (2.8)

The resonant wave has frequency ω∗ = 2, and the resonant wavenumber k∗
R = |km +

km|/k0 obeys k∗
R(G + Σk∗

R
2) = 4. If ΘR is the resonant angle between km and km, we

have k∗
R = 21/2(1 + cos(ΘR))1/2. For the resonance condition, we obtain

21/2(1 + cos(ΘR))1/2[G + 2(1 + cos ΘR)Σ] = 4. (2.9)

Using G +Σ = 1, we see that the critical angle ΘR becomes zero at Σ = 1/3. Indeed,
for Σ < 1/3, the equation has no solution, so that no resonant angle exists and
consequently triad resonance is not possible in the gravity regime.

2.2. Depth dependence of the resonance angle

The dispersion relation of Faraday waves is dependent on the depth of the fluid
layer. The dependence is strongest for small depths, k0h < 1. This has a large effect
on the resonance angle. The resonance angle as a function of Σ for different depths
is plotted in figure 4. The different position of the resonance angle implies a shift of
the peak in g(Θ), and this means that the transitions between patterns will occur at
different frequencies.

What is the relevance of wave-interactions for pattern formation? The system
chooses the state that minimizes the Lyapunov functional (2.6). The minimum is
determined only by the function g(Θ) and by the number of waves N . From (2.6) we
see that for a given N , the absolute value of the Lyapunov function becomes smaller
when the sum over the g(Θ) becomes larger. The value of the Lyapunov function
therefore becomes less negative, thereby making the configuration less favourable.

So a g(Θ) with a peak at Θp , say, will tend to disfavour patterns with waves that
are separated by the angle Θp . Note that the absolute value of the function g(Θ)
is not important, it is the relative difference at different angles that matters. The
peak of g(Θ) changes its position as a function of the excitation frequency, thereby

† The name ‘decay type’ stems from a particle analogy; the wave k3 decays in two waves k1

and k2.
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Figure 4. Resonance angle ΘR as a function of Σ for different depths of the fluid.
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disfavouring different patterns. A change of depth also changes the dispersion relation,
and with that the position of the peak in g(Θ).

The phase diagram of figure 2 is characterized by a nested structure of patterns
of increasing rotational symmetry which converges to N = ∞ at Σ = 1/3, where the
resonance angle becomes zero. This structure can be understood qualitatively by
considering the coupling function g(Θ) in figure 1(a). The resonance angle is zero
for Σ � 1/3, and g(Θ) becomes concentrated in a resonance peak at small Θ as
Σ ↓ 1/3. Therefore, the denominator of the Lyapunov function (2.6) can stay small
for increasing N if Σ approaches the critical value 1/3.

In conclusion, the overall shape of the coupling function g(Θ) is determined by
resonant three-wave interaction. This elementary process depends on the form of the
dispersion relation, which can be tuned by changing the depth of the fluid layer.
Below, we will use these ingredients to devise a simple model that captures the
dependence of the onset pattern on the depth of the fluid.

2.3. A toy model

To illustrate the main mechanism responsible for pattern formation in Faraday
waves, we introduce a toy model which highlights the resonance character of three-
wave interaction. Three-wave interaction is the result of quadratic nonlinearities. Two
waves with amplitude Ak1

and Ak2
(subsequently called wave 1 and 2) and frequency

Ω/2 force a third wave (wave 3) with amplitude Ak3
. The forced surface mode ζk3

satisfies the equation of a driven damped harmonic oscillator:

ζ̈k3
+ µ(k3)ζ̇k3

+ ω2
0(k3)ζk3

= cAk1
Ak2

cos(Ωt), (2.10)

where µ(k3) is the damping of wave 3, ω0(k3) is the frequency of wave 3 according
to the dispersion relation and c an irrelevant prefactor. To simplify matters, we take
Ak1

= Ak2
in the forcing term. The amplitude of ζk3

is then given by the resonance
form

Ak3
=

cA2
k1√

(ω0(k3)2 − Ω2)2 + µ(k3)2Ω2
. (2.11)

We proceed by observing that in the case of dynamical equilibrium, the energy lost by
wave 3 comes from waves 1 and 2. We will neglect the possibility that wave 3 spawns



10 M.-T. Westra, D. J. Binks and W. van de Water

0 0.5 1.0

4

Σ

5

3

2

1
1

2

3

4

5

66

0 0.5 1.0
Σ

(a) (b)

10–2

10–3

γ

Figure 5. Phase diagram of pattern formation computed from the toy model. (a) For infinite
depth, (b) for a depth of 3 mm. The favoured number of waves N is indicated in each region.

waves with yet shorter wavelengths so that its main decay mechanism is through
viscous dissipation. Averaged over one cycle of the driving, the viscous energy loss of
wave 3 is

1
2
µ(k3)Ω

2A2
k3

=
1
2
c2µ(k3)Ω

2A4
k1

(ω(k3)2 − Ω2)2 + µ(k3)2Ω2
. (2.12)

This energy loss is replenished by waves 1 and 2 in the right-hand side of (2.10). For
these waves in turn it is an energy loss, so that their energy Ek1

diminishes as

d

dt
Ek1

= − 1
2
µ(k3)Ω

2A2
k3

, (2.13)

with Ek1
the cycle-averaged kinetic energy, Ek1

= Ω2A2
k1
/8. It then follows that

d

dt
Ak1

= −
C µ(k3) A3

k1

(ω(k3)2 − Ω2)2 + µ(k3)2Ω2
≡ β(Θ)A3

k1
, (2.14)

where we recognize the general form of the amplitude equation (2.3) with the coupling
function β(Θ). As we only considered kinetic energy, the factor C is arbitrary, however,
its value is irrelevant for our arguments. Of course, the term describing the linear
growth of the waves is missing as it was not incorporated in (2.12).

Through a simple energy argument, (2.14) illustrates that the saturation term in the
amplitude equation does its work by resonantly coupling waves to waves k3, which
are then directly dissipated. Of course, this is an overly simple model and many details
are not correct. However, as it embodies the three-wave resonance in a correct way,
we expect it to work best for pattern formation where these resonances are crucial.

The function β(Θ) in (2.14) describes the strength of interaction between two waves
separated at an angle Θ . In the case of standing waves, we also have the complement
angle, so we take our coupling function to be

g(Θ) = β(Θ) + β(π − Θ). (2.15)

This function can be used in the Lyapunov formalism (2.5) to predict the phase
diagram of preferred pattern symmetries N . The result is sketched in figure 5(a). It
shows the same accumulation of patterns of increasing rotational symmetry around
Σ = 1/3 as the full theory. However, the phase boundaries of N = 1 and N = 2 states
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are not predicted correctly. This is not unexpected, as the patterns with low rotational
symmetry are also determined by the details of the coupling function far away from
the resonant peaks.

The full nonlinear theory by Chen & Viñals (1999) does not incorporate depth,
and cannot be easily extended to include it. With our model, we can investigate the
influence of depth on the pattern formation. The only change is that we have to use
the finite depth dispersion relation in computing the interaction function g(Θ). The
results are shown in figure 5(b).

We see that at a fluid depth of 3 mm, the point where the patterns of higher N

accumulate shifts to smaller Σ (lower excitation frequency). We also see the appear-
ance of a second series of patterns at very low frequencies. However, it is not clear
if this behaviour is to be trusted. It is not easy to check this experimentally, as the
frequencies required are very low, so a very large experiment is needed. With our
present set-up, this regime cannot be reached.

2.4. The size of the system

For interesting physics to happpen, our experiment must be very large. In this section,
we consider several aspects of the size of the container. In experiments on Faraday
waves, there are three natural sizes which are important. The lateral size of the
system L, the wavelength λ, and the correlation length ξ , which may be defined as
ξ = 2π/�k. Here, �k is the band of wavenumbers which are unstable to infinitesimal
perturbations.

The correlation length measures the distance over which the pattern is correlated,
and therefore measures the size of ‘patches’ of patterns with possibly different
orientations and spatial phases. The aspect ratio, which is a measure of the number
of different ‘patches’ is therefore properly defined as L/ξ (and not by L/λ). At ε = 0,
when the band of unstable wavenumbers has zero width, the correlation length is
infinite.

The width of the band of unstable wavenumbers �k grows as �k ∝ ε1/2, and
accordingly the correlation length decreases as ξ ∝ ε−1/2. Owing to the sidewall
boundary condition, the available modes are on a periodic lattice in k-space with
mode spacing π/L. The most interesting aspect of pattern formation is its evolution
through intrinsic nonlinearities, unrestrained by boundaries. This will occur when the
width of the band of unstable wavenumbers becomes equal to the mode spacing �k,
or when the correlation length becomes smaller than the system size L. In this respect,
we note that in the small-size experiments mentioned in § 1, the waves are correlated
over the entire extent of the system.

In order to find the correlation length, it is necessary to calculate the frequency-
dependent prefactor D in �k = Dε1/2, which can be expressed in the curvature of the
neutral stability curves of standing waves on a viscous fluid. It was computed using
the linear theory of Chen & Viñals (1999) which is elegantly phrased in terms of
continued fractions.

In figure 6, we show the ratio of the correlation length and the wavelength λ as a
function of ε, for different values of the excitation frequency. We can think of ξ/λ as
the number of waves in one ‘patch’. The solid line in figure 6 corresponds to ξ =L,
e.g. where the correlation length is equal to the size of the system. The intersection of
this line with lines of constant frequency indicates, for a certain ε, at which frequency
the correlation length is just the container size. For example, the line for an excitation
frequency of 20 Hz shows that for ε =0.1, the correlation length is about 70 times the
wavelength. As the wavelength for this frequency is about 2 cm, this means that the
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Figure 6. The ratio of the correlation length ξ and the wavelength λ for different values of
the excitation frequency. The dashed lines correspond (from bottom to top) to 100, 50, 30 and
20Hz, respectively. The solid line corresponds to ξ = L, where L is the size of the system (in
our experiment L = 440mm). The intersection of the latter line with the dashed lines (open
circles) indicates the ε where the correlation length equals the container size.

correlation length is about 1.4 m. Even at ε = 0.4, which is already in the disordered
regime, the correlation length is still about 60 cm, which is quite prohibitive for an
experiment. On the other hand, at 100 Hz, the correlation length equals our system
size (440 mm) already at ε = 0.05. Clearly, the fact that all the interesting pattern
formation happens around 30 Hz demands a very large experiment.

Although the system has a continuum of modes available above some ε, the spatial
phase that is allowed for the modes is not continuous; the 90◦ contact angle at the
sidewalls provides a ‘phase rigidity’ there. As a consequence, the position of the side-
walls is felt in a large region of the container, even though the modes may be conti-
nuous. This may lead to non-trivial time averages of the chaotic surface (Gluckman
et al. 1993, 1995; Ning et al. 1993; Bosch, Lambermont & van de Water 1994; Eguı́luz
et al. 1999), even for ε way into the disordered regime.

3. Experimental
An accurate check of the validity of the weakly nonlinear theory of pattern

formation puts stern demands on the design of the experiment. First of all, the theory
is ‘weakly nonlinear’, meaning that it is valid only just above the threshold of the
linear instability. We therefore need very good control over the dimensionless distance
from threshold ε. Both spatial variation of ε over the container, and slow variation
of ε in time have to be avoided with great care. That the long-time stability of the
experiment is important stems from the fact that at small ε the dynamics experiences
a ‘critical slowing-down’, meaning that the slow time scale diverges. In order to obtain
a defect-free pattern, for example, we often have to wait several hours.

A second problem is that the size of the system is finite, whereas the theory
was formulated for the infinite system. Matters of size have been discussed in the
previous section, with the unavoidable consequence that the physical size must be
large indeed. To our knowledge, our experiment is the largest experiment on Faraday
waves conducted so far.



Patterns of Faraday waves 13

(a)                                                                                                                    (b)

(c)

0.44 m

Exciter

Heat Exchanger

Light source

Fresnel lens

Accelerometer

Translucent screen

Figure 7. (a) Schematic overview of the container and support structure. (b) Vertical wall
boundary condition, (c) sloping wall boundary condition.

3.1. Shape and size of the container

The shape and size of the container have many effects on the experiments. As the
theory described in § 2 is valid only for systems infinite in the lateral extent, the
most important concern is the size of the experiment and the corresponding mode
quantization. As explained in § 2.4, the width of the band of unstable wavenumbers
increases with the excitation strength ε. As argued in that section, we expect the
system to become insensitive to the size of the system above a certain ε, where the
unstable wavenumbers form a continuous band. The smaller the size of the system,
the higher the required ε. For a comparison with theory, which is valid only at
threshold, this means that the system size should be as large as possible.

A schematic overview of the experimental set-up is shown in figure 7(a). We use
a circular container with a diameter of 440 mm and a vertical wall boundary. The
bottom of the container is a 15 mm thick glass plate, the wall consists of a Perspex
ring of 25 mm height. At this size, the expected mode continuum occurs below ε ≈ 0.1
for excitation frequencies between F =25 . . . 40 Hz.

The shape of the edge determines the boundary condition. The boundary of
figure 7(c) allows the container to be filled to the rim, with the sloping sidewall
(whose slope equals the contact angle) just wetted by the spilling fluid. This ‘brimful’
condition is the best approximation of a pinned boundary. Because of the low surface
tension of the fluid used in our experiment, the sidewall of the container is always
covered with a very thin layer of fluid. For making a pinned boundary condition,
we have to let the fluid settle for a long time. However, all but the smallest wave
amplitudes cause the fluid to wet the edge in a manner dependent on the mode
present. Moreover, very slight differences in the height of the fluid result in large
changes of the boundary condition.

Because of the difficulty in realizing a pinned boundary condition, we decided only
to use a vertical wall boundary condition in the large circular container (figure 7a).
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Another effect of the pinned boundary condition is the strong quantization of modes.
In the case of the vertical wall boundary condition, the wetted sidewall provides
a ‘soft’ mode quantization, which in effect makes good patterns possible before we
would expect them on the basis of the continuum argument sketched in § 2.4.

In a circular container, the orientation of the wave patterns is undetermined and
is found to drift slowly in time. In some of our experiments, we are interested in
the temporal and spatial phase of the surface waves. Our experimental technique
to measure those needed a pinned surface. This was done in a square container
with sidewalls of 160 mm length and a sloping edge of 20 mm height, as shown in
figure 7(c). For ease of construction, the square container is simply placed inside the
large circular container.

Straight sidewalls emit a meniscus wave. This is because the length of the meniscus
(which is set by l = (σ/(gρ))1/2) depends on the acceleration due to gravity. When
the cell goes up, the effective gravity increases and the meniscus length decreases. In
order to preserve mass, a surface wave is emitted. As the wave is directly forced, it
has the same frequency as the drive, and it is always present.

As stated before, the meniscus wave can be overcome by using the ‘pinned’ boundary
condition. In practice, our container is large enough for the meniscus wave to be
damped out in the measurement region. The decay length of the meniscus wave can
be estimated by ldecay ≈ (ω/2k)/(2νk), which is just the velocity of the meniscus wave
multiplied by the viscous decay time. In our case, ldecay ≈ 40 mm for F = 30 Hz. As
our container has �= 440 mm, the meniscus wave is easily avoided.

Levelling is done using the experiment itself: just above threshold we immediately
notice small level faults as an inhomogeneity of the surface pattern. The levelling
error was measured with a sensitive water level and, at the sidewalls, the deviation
of the mean depth was found to be ≈ 0.1 mm in the case of the circular container
(�= 440 mm), and ≈ 0.03 mm for the square container (160 mm square). The depth
of the fluid, which varies from 2 to 20 mm, is determined by measuring the volume of
the fluid. As we have a large container (�= 440 mm) an error of 1 ml in the volume
gives rise to an negligible error of ≈ 7 µm in the depth. Therefore, the largest error
in the depth is due to the levelling error. If not specified otherwise, a fluid depth of
20 mm was used which can be considered as infinitely deep, as will be argued in § 4.5.

3.2. Excitation, fluid and temperature control

The large circular container is attached to a hollow aluminium conical structure (see
figure 7). The cone is attached at approximately 2/3 the radius of the container to
suppress the lowest mechanical vibration mode of the bottom plate of the container.
Inside the cone, several devices can be placed, i.e. mirrors or detectors. The entire
structure is mounted on top of a Ling Dynamic Systems electromagnetic exciter that
can deliver a maximum force of 2900 N.

The exciter is driven using a computer controllable NF Electronic Instruments
1930A frequency synthesizer. The frequency is constant to 1 part in 106. The
signal is amplified with a Ling Dynamic Systems power amplifier, with a maximum
power of 2000 W. The acceleration amplitude is measured by means of piezoelectric
accelerometers with one high-resolution sensor mounted to the bottom centre of the
cone, and two lightweight sensors which may be mounted at various positions on the
container.

The amplitude of the acceleration is determined using a discrete Fourier transform
on an integer number of periods of the drive. Mainly because of temperature effects,
the ratio between the output signal of the power amplifier and the actual amplitude
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of the exciter is not a constant. Therefore, we use a simple linear control loop to keep
the actual acceleration amplitude constant. In this way, the amplitude is constant to
within 0.3 %.

The quality of the acceleration was checked by measuring the signal of the high-
resolution accelerometer at the bottom of the cone at a frequency of 30 Hz and an
amplitude of 0.28 g. The power spectrum of this signal showed no discernible higher
harmonics of the 30 Hz signal.

As most of the interesting pattern formation takes place between 25 and 40 Hz, we
have constructed both the container and the supporting cone to have their resonances
at high frequencies. The lowest resonant mode of joint vibration of container and
cone lies at ≈ 590 Hz. Although the materials used have low internal damping, some
of the found structural resonances were appreciably broadened. In order to minimize
their influence at the frequencies of interest, it was important to move them to high
frequencies by structural adaptations.

The exciter itself has two resonances, which both correspond to side-to-side motion.
The first occurs at 20 Hz, the second at 40 Hz. At the frequency range of interest (25–
40 Hz), the major contribution to inhomogeneity of the acceleration is due to these
modes. To gain insight into the inhomogeneities of acceleration, we simultaneously
measured the acceleration at the bottom of the cone and at four positions on the
edge of the container using two accelerometers. By careful mechanical tuning, it
was possible to move all resonances out of our frequency window of interest such
that in the region of interest (25–35 Hz), the acceleration inhomogeneity is smaller
than 2%.

The fluid we use is a low-viscosity low-surface-tension silicon oil (Tegiloxan 3
produced by Goldschmidt AG, Essen, Germany). At 21 ◦C, its specified surface tension
is α = 18.3 × 10−3 J m−2, which is within 0.5% of the measured value. The measured
viscosity is ν = (3.63 ± 0.03) × 10−6 m s−2, and specified density ρ = 892.4 kgm−3. The
tendencies of the fluid parameters with temperature are such that they are constant
to within 0.1%, given our temperature control.

Owing to the low surface tension, the oil forms a thin smooth layer on the vertical
walls and on the covering glass plate, which greatly facilitates optical accessibility. If
we use water, for example, droplets quickly form on the covering glass. The wetted
sidewalls guarantee a ‘soft’ boundary condition.

Another advantage of the low surface tension is that no surface film is formed on
the free surface of the fluid. If we use water, after a short period of time, a surface film
is formed which completely changes the surface tension. As shown by Henderson &
Miles (1994), the presence of a surface film can strongly affect both the surface tension
and the damping at the free surface. The finite compressibility increases the dissipation
of energy in the boundary layer. This problem has been studied thoroughly by Miles
& Henderson (1998). Owing to the relatively short molecular chains, the low-viscosity
silicon oil we use behaves like a Newtonian fluid. Only the higher-viscosity silicon
oils show non-Newtonian behaviour.

The temperature of the whole construction is kept constant to within 0.03 ◦C. To
this end, the whole construction is placed in a temperature controlled room with
temperature 21.0 ± 0.1 ◦C. The construction is insulated from the (heat producing)
exciter with a water-cooled heat exchanger. The cooling water is kept at 21.0 ± 0.1 ◦C.
Measured temperature fluctuations inside the container are down to 0.03 ◦C.

The light source used in the shadowgraph technique (see § 3.3) is a standard 150 W
incandescent halogen lamp which illuminates a multi-stranded optical fibre after
passing through a heat filter. As no significant temperature change is observed after
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Figure 8. Principle of the laser refraction method.

turning on the lamp, it may be concluded that the use of the heat filter is sufficient,
and that absorption of light in the fluid may be neglected.

3.3. Measuring waves

To visualize Faraday waves, the shadowgraph technique is often used. It visualizes
the free surface using the refraction of parallel light incident from below. A Fresnel
lens (see figure 7) is used to render the light parallel. The waves focus or defocus the
light, which then forms bright and dark spots on a screen placed above the container.

Images of the surface are made using a 1024 × 1024 8-bit CCD camera with a liquid
crystal shutter. A programmable hardware system allows us to control the phase at
which the image is taken. The integration time of the image is kept well below half
the period of the wave, so that the image can be considered as an instantaneous
snapshot of the surface. The images are processed and stored in a dedicated digital
imaging system. The fundamental nonlinear nature of the imaging process, however,
restricts the method to obtaining only qualitative information of the wave field.

A precise linear measurement of the elevation ζ (x, y) over the entire surface is
difficult. A noteworthy attempt to use diffusing light scattering was reported by
Wright, Budakian & Putterman (1996). In our experiment, we use a laser refraction
method which gives an accurate linear measurement of the surface slope in a point.
The principle is sketched in figure 8.

A laser beam is focused onto the surface and the position of the refracted beam
is measured with the help of a position sensitive device (PSD) with a surface area
of 20 × 20 mm2. The x and y position signals of the PSD sensor are low-pass filtered
at 10 kHz and sampled with a 12-bit ADC at 20 kHz. From the position of the light
spot on the PSD and the distance of the PSD to the fluid surface, the surface slope
(∂ζ/∂x, ∂ζ/∂y) follows from an elementary geometrical argument. The linearity of
the slope measurement is better than 0.1%.

Owing to the long time scales involved in Faraday waves, the experimental set-up
is completely automated. This automation allowed us to perform careful experiments
that human impatience would otherwise prevent.

4. Experimental results
4.1. Linear behaviour: onset

The onset driving amplitude and the dispersion relation for Faraday waves is predicted
by well-established linear theory (Kumar & Tuckerman 1994). Still, we find it useful
to compare these predictions to experiments, as it provides a check on the accuracy
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Figure 9. Onset of the linear instability as a function of frequency. +, depth of 25mm;
�, 3mm; ×, 2mm. Full lines: theoretical predictions.

of both experiment and theory. The onset driving amplitude is determined by the
effects of bulk viscosity and bottom friction.

To measure the onset of the linear instability, the control parameter is slowly
increased, and the presence of subharmonic waves is assessed by eye. The results for
the onset for various depths of the fluid layer are shown in figure 9. As was also
found by Bechhoefer et al. (1995), Kumar (1996) and Lioubashevski et al. (1997),
the experiment agrees well with the predictions from linear theory. The theoretical
onset curves were computed using a viscosity ν = 3.67 × 10−6 m2 s−1, which is not
significantly different from the measured value. In fact, the precision of experiment
and theory makes linear Faraday waves a system that can be used to measure both
surface tension and viscosity. In very small containers, sidewall friction is known to
affect the onset acceleration. For the large container (440 mm diameter), we expect
this effect to be negligible.

4.2. Linear behaviour: the dispersion relation

In § 2.1, it was emphasized that pattern formation depends crucially on the precise
shape of the dispersion relation. Therefore, it is important to measure the dispersion
relation in the experiment and compare it to the theoretical prediction. In our
measurement we make use of the fact that at a given frequency ω0, the fastest
growing wave has wavenumber k0. If we change the excitation abruptly from a value
beneath onset to a value about 20% above onset (ε = 0.2) we observe the formation
of a concentric set of circular waves (see figure 10b). This circular pattern (which
is not a Bessel pattern) soon breaks up. However, we can capture the first pattern
by the digital camera if we time it correctly. The maxima of figure 10(b) are spaced
equidistantly and the wavelength is the mean spacing. Of course, just above threshold,
we do observe Bessel modes. The circle-symmetric pattern shown in figure 10(b) is
already far above threshold, so many Bessel modes are excited. The observed pattern
is therefore not a fundamental mode of the system, but consists of many of them.

The experimental results for depths of 2 and 20 mm are shown in figure 10(a),
together with the theoretical predictions of the inviscid finite depth linear theory and
the viscous theory by Kumar & Tuckerman (1994). We see that at a depth of 20 mm,
the inviscid theory already gives a good approximation of the dispersion relation; the
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Figure 10. (a) Dispersion relation ω(k) plotted on a log–log scale. The angular frequency ω
of the waves is equal to half the excitation frequency. �, experimental data for a depth of
h =20 mm (effectively infinite for this range of k). �, measurements for a depth of h = 2 mm.
—, ω2(k) = tanh(kh)(gk + (σ/ρ)k3 for h = 20 and h = 2 mm (lower line). – – –, viscous theory
Kumar & Tuckerman (1994) for h =20mm (the line corresponding to h = 20 mm is not visible
as it coincides with the solid line) and 2mm (lower line). The short line segment designates the
linear dependence ω ∝ k. (b) Pattern observed just after the excitation amplitude is changed
abruptly from zero to ε ≈ 0.2 at an excitation frequency of 25Hz. Owing to restrictions in the
visualization, only the central 2/3 fraction of the container is shown.

effect of viscosity can only be felt at very shallow depths. The experimental results
agree perfectly with theory.

4.3. The phase diagram of pattern formation

The theoretical phase diagram shown in figure 2 predicts the existence of nested
regions in parameter space with patterns of increasing rotational symmetry. In the
experiment, we indeed find many patterns with different rotational symmetries, as
shown in figure 11.

Note that the patterns with 4- and 5-fold rotational symmetry in figures 11(c) and
11(d) are special: they do not fill the plane regularly. For this reason, they are often
called quasi-crystalline patterns. It is well known that only patterns with 2- and 3-fold
rotational symmetry (e.g. squares and hexagons) can fill the plane regularly, and it
was long believed that patterns with 5-fold symmetry did not exist in nature.

It is a challenge to verify the whole phase diagram of pattern formation in the
experiment. Because near phase boundaries the dynamics slows down critically, we
have devised automated procedures to detect the presence of patterns with a given
symmetry.

In order to determine the phase diagram, we scan (ε, F )-space, where F is the
excitation frequency and ε the dimensionless distance from threshold. At each value
of F , we determine the pattern at different values ε above threshold. The boundaries
in the phase diagram were determined in two ways. The first consists of quasi-static
upward scans in ε at a fixed frequency. The slow dynamics of the system dictate
long measurement times. The amplitude is increased in steps of ≈ 1%, then held for
2000 s after which 5 images with 1000 s intervals are taken to observe any temporal
dependence. As a check that we do not introduce any hysteresis in this manner, we
perform a second scan, this time with fixed ε and increasing frequency F . At each
value of ε and F , we started with zero excitation amplitude (ε = −1), and then
jumped to the desired value. In this way, any artificial introduction of hysteresis in
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(a) N = 2 (b) N = 3

(c) N = 4 (d ) N = 5

Figure 11. Shadowgraph images of the fluid surface at (a) F =45Hz, (b) F = 30 Hz, (c) F =
29 Hz, (d) F = 27 Hz. ε = 0.1 in all cases. The patterns correspond to N =2, 3, 4 and 5
standing waves, respectively. Again, only the centre 2/3 part of the container is visualized. The
appearance of both hexagons as triangles in (b) is explained in § 4.4.

the patterns was prevented. There were no observed differences in the results of both
methods.

Just above onset, only few modes are exited. In the circular container this gives
rise to Bessel modes. At higher ε, enough modes are excited to form regular patterns.
As discussed in § 2.4, we expect Bessel modes below the line �k = π/L, and regular
patterns above this line.

In order to automatically recognize the pattern, we first compute the two-
dimensional power spectrum of the image, which is obtained from the two-dimensional
Fourier transform in the usual way. We then perform an angular correlation in the
power spectrum, which effectively determines how many angular maxima the spectrum
has. An n-fold symmetric pattern will have 2n peaks in its power spectrum on a circle
of radius k. In order to bring out the regular spacing of the peaks more clearly, we
compute from each power spectrum (P (k, θ)), the angular correlation function C(φ)
averaged over a band of wavenumbers of width ≈ k.

C(φ) =

〈
Σθ [P (k, θ) − P̄ ][P (k, θ − φ) − P̄ ]

Σθ [P (k, θ) − P̄ ]2

〉
. (4.1)

In comparison with other methods (Kudrolli & Gollub 1996), the resulting function
C(φ), will for an n-fold pattern have peaks at precisely 2π/n, independent of the
orientation of the pattern and the k range over which C(φ) is averaged. This last
point is crucial, as higher spatial harmonics can lead to extra peaks in C(φ) if P (k, θ)
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Figure 12. Graph of the angular correlation C(φ). A slow upward scan in ε was performed at
F =35Hz. The range extends from ε = 0.01 to ε = 0.23. Each line is an average over 5 images
taken 200 s apart.

is summed over k before computing C(φ). These higher harmonics unavoidably arise
owing to imaging nonlinearities.

As an example, we show in figure 12 the function C(φ) for the states that are
encountered in a slow upward scan of ε at F = 35 Hz. For each ε, C(φ) was averaged
over five images taken 200 s apart. Figure 12 shows the transition from the flat state
below onset to the hexagonal state with peaks at 60◦ and 120◦, which in turn gives
way to the square state with a peak at 90◦.

In figure 13(a) we show the phase diagram of Faraday waves obtained by the
methods explained above. Just above onset, we see Bessel modes. At higher ε, regular
patterns set in. We see a cascade of patterns with changing frequency, going from
squares at high frequency through hexagons to 4-fold, and eventually 5-fold rota-
tionally symmetric patterns. The square and hexagonal patterns coexist in a large
transition region. Although there is probably also a transition region between the
N = 3 and N =4 regions, it is too narrow to be determined in this experiment.

Exactly at onset, the correlation length ξ = 2π/�k diverges, and the boundary
conditions discussed in the previous paragraphs are felt. The large circular container
has a diameter of 440 mm. As shown in § 2.4, the continuum is reached at ε = 0.04
at 30 Hz. In the phase diagram figure 13, we clearly see that patterns emerge at
reduced driving amplitudes above the line �k = π/L. However, the best patterns are
seen around ε = 0.1. At very low fequencies, we observe Bessel modes well above the
line �k = π/L. Strictly speaking, at F = 25 Hz the correlation length equals the size
of the container (corresponding to �k = 2π/L) at ε ≈ 0.32. Clearly, the mode spacing
argument is crude, and does not allow for the mode structure of the circular container
and the details of the boundary condition at the vertical walls. To stress once more
the importance of size, we note that had we used a container of diameter 100 mm, the
continuum at 30 Hz would lie at ε = 0.59, which is well into the disordered regime.

The lines in figure 13(b) denote the phase boundaries of different patterns. The
transition frequencies at threshold were determined by the points were the lines cross
the ε = 0 line. Using the parameters of our fluid, and using the program which was
kindly provided to us by Chen & Viñals, we computed the theoretical results for the
transition frequencies. They are compared to the experiment in table 1. The frequencies
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Figure 13. (a) Phase diagram of pattern formation. �, N = 2; �, N =3; +, N = 4; �, N = 5;
×, Bessel modes. The solid line corresponds to the line where �k = π/L. (b) Lines drawn
through transition regions. The solid line and the right-most dashed line delimit the transition
region from an N = 2 to an N = 3 pattern. In the region marked 3 − 2, both square and
hexagonal patterns coexist. The dashed line in the middle is the boundary between the N = 3
and the N = 4 regions. The dot-dashed line is the boundary between the N =4 and N = 5
regions. The dotted line is the boundary between the N = 5 and the Bessel mode region.

Transition Experiment Theory

2 → 3 35.3 ± 0.3 35.4
3 → 4 29.5 ± 0.9 28.4
4 → 5 28.6 none

Table 1. Transition frequencies.

of the first two transitions are seen to agree with theory, approximately to within the
experimental uncertainty. Considering that the theory contains no fitted parameters,
this is remarkable. According to the theory, the experimental trajectory through
the (Σ, γ )-phase plane of figure 2 would just miss the region in which the 5-fold
rotationally symmetric pattern is preferred; still, we do observe it around F = 28 Hz.
Both the observed N =5 pattern and the value of the predicted 3 → 4 transition, point
to a slight discrepancy with theory. On the other hand, the corresponding frequencies
are so low that we may start to feel the finite size of the experiment.

4.4. Triangles versus hexagons

Looking at the N = 3 patterns of figure 11(b), we note that some parts of the figure
appear as hexagons and other parts as triangles. This is caused by the fact that if we
add three standing waves at equal angles, we have the freedom to choose the spatial
phase of one of the waves. Figure 14 shows the effect of shifting the spatial phase of
one of the waves over π/2 radians. Clearly, whether the surface appears as hexagons
or triangles depends on the spatial and temporal phases of the waves.

The spatial phase of the waves is undetermined at the order of the nonlinearity of
the theory described here. In other pattern forming systems showing a pattern with
three waves at a mutual angle of 120◦, or in the case of two-frequency forcing of
Faraday waves, the spatial phase is determined by quadratic terms in the amplitude
equation (Edwards & Fauve 1994), whilst quintic terms were considered by Müller
(1993). These quadratic and quintic terms then determine whether the system forms
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Figure 14. The effect of the spatial phase. (a) and (b): patterns consisting of three standing
waves at a 120◦ angle. The solid lines denote the maxima of the waves at time zero, the dashed
lines show the maxima half a period of the wave later. In (b), the position of the horizontal
wave has been shifted downwards by π/2. (as) and (bs): wave heights corresponding to the
solid lines in (a) and (b), respectively (black regions correspond to high surface elevation). (ad )
and (bd ): wave heights corresponding to the dashed lines in (a) and (b), respectively.

hexagons or triangles, and usually no mixed region is seen in these cases. As explained
in § 1, we do not have quadratic terms in the amplitude equation describing Faraday
waves due to the subharmonic symmetry A → −A, and close to threshold, quintic
contributions are very small.

4.5. Effects of fluid depth on patterns

The change of the pattern symmetry with fluid depth is a profound consequence
of the three-wave resonance which strongly organizes the nonlinear damping of
Faraday waves. In § 2.1, we discussed the influence of the dispersion relation on
pattern formation. From the inviscid expression (2.1) it is seen that the shape of the
dispersion relation can be changed by altering the depth, with the relevant factor
tanh(kh). Correspondingly, the depth (z) dependence of the velocity field is for deep
fluids given by ekz. Comparing the value of ekz (for 25 Hz, where k ≈ 445 m−1) at
z = −2 mm and z = −20 mm, (0.41 and 0.0001, respectively), we see that even at a
depth of 20 mm, the velocity is already very small compared to the velocity at the
surface. We therefore expect that, given the range of frequencies we use in the
experiment (25–45 Hz), even moderate depths (≈ 20 mm) can effectively be considered
infinite, as there will be only a very small effect on the flow. This expectation is clearly
corroborated by figure 10, where the experimental dispersion relation for a depth
of 20 mm coincides with the analytical infinite depth dispersion relation. As long as
the dimensionless ratio between wavenumber and depth kh is large, the system can
be considered infinitely deep. This means that for lower frequencies (with smaller
wavenumbers), the approximation becomes worse.

The dramatic influence of finite fluid depth on the symmetry of the threshold
pattern is illustrated in figure 15, where we observe at the same excitation frequency
and amplitude a four-fold rotationally symmetric pattern at depth h = 10 mm and a
hexagonal pattern at h = 3.5 mm. The complete phase diagram is shown in figure 16.
We see that for smaller depth, both transition frequencies shift to lower values.
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(a)                                                                        (b)

Figure 15. Shadowgraph images of the fluid surface at F = 29 Hz at ε = 0.1. (a) Depth of
3.5mm showing a hexagonal pattern, (b) depth of 10 mm showing a pattern consisting of four
standing waves.
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Figure 16. Boundaries between different pattern symmetries at ε =0.1 in the driving
frequency-depth plane. �, 3–4 boundary. �, 2–3 boundary. The error bars denote the width
of the transition region from one pattern to another. –·–, predictions from Chen & Viñals
(1999) for infinite depth. – – –, transition computed from the toy model in § 2.3. —, contours
of constant resonance angle (using the viscous dispersion relation) chosen so that at infinite
depth they pass through the transition frequencies.

The form of this phase diagram can be understood very well from the change of
the dispersion relation with depth. As explained in § 2.1, pattern formation at these
frequencies is strongly influenced by a three-wave resonance which is characterized
by a resonance angle ΘR between the wavevectors. The resonance angle changes with
depth in a characteristic way such that ΘR decreases when the depth decreases (see
figure 4). It is precisely this change that causes the transition of one type of pattern
formation to another. The solid lines in figure 16 are lines of constant resonance

angle Θ̃R which were forced to pass through the phase boundaries at infinite depth

by the appropriate choice of Θ̃R . They trace the observed phase boundaries rather
well, which demonstrates that the change of we pattern symmetry to another is set
by a three-wave interaction at a particular value of the resonance angle.

Whilst lines of constant resonance angle are a relative prediction, the absolute
phase boundaries can also be computed using the model of § 2.3. These predictions
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are shown as the dashed lines in figure 16. Because our model does not reproduce
well the coupling function away from the resonant peaks, the absolute prediction of
the depth-dependent boundaries has a much larger error.

4.6. Measurements of the wave field

Nonlinear damping through wave coupling implies that many waves are present on
the surface, each with its own frequency and (temporal) phase. The weakly nonlinear
theory by Chen & Viñals (1999) predicts the properties of these waves, at least up to
order ε, i.e. the waves with harmonic frequency Ω . A measurement of the associated
amplitudes and phases requires an extremely linear measurement of the surface. Using
the laser refraction method of § 3.3, we are able to measure the surface slope in a
single point. In this section, we explain that such a measurement yields amplitudes
and phases of various waves which can be compared to a theoretical prediction.

Our emphasis will be on a measurement of the detailed surface structure, not on
absolute values of amplitudes. The absolute amplitude of the subharmonic wave in a
striped pattern was measured by Wernet et al. (2001) who used the dispersion of a
wide laser beam that was reflected off the surface.

For measuring the wave amplitudes it was necessary to fix the spatial phase by
pinning the surface in the square container at an excitation frequency (40 Hz) where
a square pattern is preferred. Since the boundaries now matter, the results cannot
strictly be compared to the infinite system case. The square container that we use
has a width of 160 mm. The continuum would then start at ε = 0.26, which is already
close to the disordered regime.

We will focus our attention on the behaviour of the linearly unstable waves and
the waves which are generated by the nonlinear interactions between the linearly
unstable waves. In terms of the theory, the linearly unstable waves correspond to the
order ε1/2, which we will call subharmonic waves, and the order ε term corresponds
to the waves generated by the linearly unstable waves, which we will call harmonic
waves. For a measurement of the phase we have devised methods that work for an
unpinned pattern. These measurements, performed in the large container, should be
free of boundary effects.

4.6.1. The subharmonic wave

The slowly varying amplitude Bm(T ) of the subharmonic wave satisfies the
amplitude equation (2.3). For an N -fold rotational pattern the stationary amplitude
is given by

B = ε1/2 (γω)1/2

(
g0 +

N∑
m=2

g(Θm1)

)−1/2

. (4.2)

In the weakly nonlinear case, therefore, the amplitude grows as ε1/2 with the distance ε

above threshold. An experimental test of this relation is highly relevant as it delineates
the range of applicability of a weakly nonlinear approach.

In a square container, slow upward scans of ε were made. At each ε, a time series
of the time-dependent slope was registered, from which the power spectrum was
computed. Even in a square container, square patterns with a slightly different spatial
phase may be selected when the excitation amplitude is increased from zero. To
circumvent this, we repeat the experiment by decreasing ε slowly towards threshold,
and just above threshold start increasing again, so that we keep the same spatial
mode. This procedure is repeated ten times. For each value of ε, the power spectra
of the measured slope are averaged. The area underneath the first peak in the power
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Figure 17. Scaling of the power Ps of the subharmonic wave with ε. Excitation frequency
40Hz. The error bars (which are almost always obscured by the dots) denote the uncertainty
of the measured power; the full line is a fit to the data which demonstrates that the wave
amplitude grows as ε1/2.
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Figure 18. Relation between excitation and surface slope. —, measured surface slope as a
function of time for ε = 0.02 and F = 50 Hz. – – –, measured acceleration of the container. The
arrow denotes the phase difference between the two. In terms of the excitation, the wave lags
by 90◦. In terms of the subharmonic wave, the excitation heads by 45◦.

spectrum is proportional to A2, so the total power Ps in the area should scale as ε.
The results of this procedure are shown in figure 17. It is clear that the bifurcation is
supercritical, and the expected scaling holds up to at least ε = 0.2. After this value of
ε, the pattern often develops defects, so the spatial phase is not constant anymore.

4.6.2. The temporal phase of the subharmonic wave

Another prediction of the weakly nonlinear theory that can be verified experi-
mentally concerns the temporal phase of the harmonic waves as a function of the
reduced excitation amplitude ε. This prediction was computed by us from the theory
by Chen & Viñals (1999) using symbolic manipulation software that was kindly
provided by them. The definition of the phase is shown in figure 18. It is seen that
we define all phase differences in terms of the harmonic frequency.
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Figure 19. Phase of the subharmonic wave with respect to the excitation as a function of ε.
The solid line is a linear fit through the data between ε = 0.1 and ε = 0.25. The dashed line is
the theoretical phase from the linear stability analysis.

Since a measurement of the phase is in principle insensitive to the amplitude of
the standing waves, it is no longer necessary to pin the surface. Therefore, these
measurements were done in the large container with 0.44 m diameter. In order to
cope with the drift of the surface wave pattern, we used the following procedure. The
phase and the power of the subharmonic wave in a short stretch of data, containing
an integer number of wave periods (4 . . . 8), is determined by means of a Fourier
transform. The procedure is repeated with a different stretch of data, shifted by one
wave period. In other words, a window with the size of an integer number of wave
periods is slid over the data, and for each position the phase and power is computed.
Notice that in our definition, the phase of a crest is the same as that of a trough,
so that the phase does not depend on the spatial location where it is measured.
Of course, a problem arises if this location happens to be at a node of the wave
pattern. These problematic points were avoided by rejecting measurements that had
too small a spectral power. The result is depicted in figure 19. The phase lag of the
Mathieu equation is 90◦; the linear theory of surface waves predicts a value (also
shown in figure 19) that is slightly higher. At very small ε, the measured phase tends
to this limit. For increasing ε, it first experiences a rapid decrease, after which it
decreases more slowly, and apparently linearly with ε. We do not understand this
behaviour. Perhaps, the first rapid decrease is a finite size effect, and the phase in the
unbounded system is the one that can be linearly extrapolated to ε = 0 from the large-ε
behaviour.

4.6.3. The harmonic wave

Through nonlinear interactions the subharmonic waves generate harmonic waves
which have the same frequency as the excitation. As two subharmonic waves generate
a harmonic wave, the amplitude of the latter scales as ε. We perform a scan in ε in
the square container, in the same way as before. The power in the harmonic wave
Ph, which is proportional to the amplitude squared, should scale as ε2. The result
is shown in figure 20. The expected scaling holds very well up to ε = 0.2, where the
pattern starts to be distorted by defects.

The phase of the harmonic wave was obtained in the same way as the subharmonic
wave. The phase of the harmonic wave with respect to the excitation as a function of
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Figure 20. Scaling of the power Ph of the harmonic wave with ε. The solid line is a linear
fit through the data. As there is a small uncertainty in the value of the onset, the fit was not
forced to go through (0, 0).
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Figure 21. Phase of harmonic wave with respect to the excitation as a function of ε.
The solid line is a linear fit through the data between ε = 0.1 and ε = 0.25.

ε is shown in figure 21. We see that the behaviour of the phase is exactly the same as
for the subharmonic wave, the only difference is that it is shifted by a fixed amount,
which is independent of ε. Therefore, the phase difference between the two waves is
a well-defined quantity, independent of ε.

To simplify the computation of the phases, we only consider self-interaction between
the waves. Because the self-interaction coefficient is much larger than the coupling of
perpendicular waves, self-interaction dominates in the square pattern.

A subtle point is that what we compute is not exactly what we measure. The
experimental subharmonic wave field is the sum of all terms in the theory that
involve odd powers of ε1/2, whereas the harmonic field consists of all terms involving
even powers of ε1/2. In the calculation, we only consider terms of order ε1/2 and of
order ε, for the subharmonic and harmonic waves, respectively. Still, we believe that
the phase difference between these terms is the same as that between the harmonic
and subharmonic waves.
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Figure 22. Phase difference between subharmonic and harmonic wave as a function of
the excitation frequency. The phase difference is independent of ε. �, experimental values;
—, theoretical values according to Chen & Viñals (1999); – – –, theoretical values according
to Zhang (1994).

In figure 22, we show the experimental values for the phase difference between
the subharmonic and harmonic waves as a function of frequency. At each frequency,
many runs were performed at different ε, and it was verified that the phase difference
is independent of ε. The error bars represent the standard deviation in the observed
values for the phase.

The experiments are in striking agreement with theory; we even notice that the
theory by Chen & Viñals (1999), which is an improvement over that by Zhang (1994),
agrees best with the experiment. The agreement is poorest around the frequency of
the three-wave resonance (28 . . . 38 Hz) where the non-self wave interactions which
were ignored in our computation become important.

4.6.4. Spatial structure of the wave field

The weakly nonlinear wave field has, in fact, a very complicated structure. Several
waves of various frequencies collaborate to provide the nonlinear dissipation that
determines the amplitude of the wave field. It is interesting to see how these waves are
organized in space. This can only be done in an experiment with an extremely linear
detector of wave heights or wave slopes. Shadowgraph techniques are completely
unsuitable for studying the fine details of the standing-wave pattern.

For these experiments we pinned a square standing-wave pattern at an excitation
frequency F = 64 Hz and a reduced excitation amplitude ε = 0.15 in a square container.
We then sampled time series of point measurements of the slope in 62 points, on a
line of length 15.5 mm. At each of these points, we computed the power spectrum
of the signal. The wave amplitude at frequencies ω0 (subharmonic), 2ω0 (harmonic)
and 3ω0 is shown in figure 23. A first striking observation is that the nodes of the
subharmonic waves are also nodes of the harmonic wave, which has half the
wavelength of the subharmonic wave. This can be understood from the dominance
of the self-interaction in this square wave pattern. It is also remarkable, but not
surprising, that the harmonic wave does not satisfy the dispersion relation.

Surprisingly, also the wave at 3ω0 can be clearly seen. It has wavelength equal
to three times the wavelength of the subharmonic. It is generated by an interaction
of the subharmonic with the harmonic. The variation in amplitude of the maxima
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Figure 23. Scan over a square pattern, with F = 64 Hz and ε = 0.15. The scan direction was
parallel to one of the waves constituting the pattern. The amplitude (derived from the power
spectrum of the slope) of the subharmonic 1, harmonic 2, and the wave at 3 ω0, 3, are shown
as a function of position. As we measure the power, we can only retrieve the absolute value
of the amplitude. The irregularity around 6 mm is probably due to a scratch in the glass.

is probably caused by a misalignment of the scanning direction with respect to the
pattern.

5. Conclusion
In this paper we have presented measurements that check the linear instability

theory and the weakly nonlinear theory of pattern formation introduced in § 2 The
threshold of the instability and the dispersion relation for finite depth were shown
to agree with the theoretical estimates. Indeed, the linear stability theory for Faraday
waves is so well developed that we expect that Faraday waves may be used as an
alternative technique to measure fluid parameters such as viscosity and surface tension
with great precision.

The phase diagram for pattern formation was shown to agree precisely with the
theory by Chen & Viñals (1999). In the case of finite depth, we have shown that the
change in the pattern formation can be understood from the change in the shape of
the dispersion relation with depth. Together with the toy model we have introduced,
this provides a convincing proof that pattern formation of Faraday waves can be
understood as a three-wave resonance phenomenon.

By using an extremely linear measurement technique, we have been able to directly
test quantitative predictions on the wave field. The scaling and the phase of both the
harmonic and the subharmonic waves were shown to give excellent agreement with
theoretical estimates. Finally, a surface scan was presented which clearly shows the
nonlinearly generated waves and their positions for the first time.

This paper also describes a concentrated effort to study nonlinear hydrodynamics
in systems that are so large that the boundaries are no longer relevant. Thus, we are
focusing on an intrinsic property of the nonlinear wave field. We believe that this is a
more interesting problem than a study of the influence of boundaries. Boundaries can
be made of any form and shape, each introducing its own peculiarity. Another way
to make a system effectively large is to use a fluid with high viscosity (Edwards &
Fauve 1994), as this decreases the correlation length of the system. However, in this
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case we would have missed the cascade of patterns of increasing rotational symmetry
near the point of three-wave resonance.

In view of the very favourable agreement between experiment and theory we
may conclude that the problem of weakly nonlinear Faraday waves and the surface
patterns they form is a solved problem. However, the amplitudes of the standing waves
considered here do not have a space dependence: the patterns arise by combining
N of them with equal amplitudes distributed at equal angles on the circle. Other
than a local phase ambiguity in § 4.4, we have not considered an essential spatial
dependence. A spatial structure of the slow amplitude field B(x, T ) can be described
by extending (1.1) with a diffusion term and allowing B to be complex. The resulting
equation, the complex Ginzburg–Landau equation, has proved to be a powerful
organizing principle to understand pattern formation and the emergence of coherent
structures, such as defects and fronts (Cross & Hohenberg 1993). Unfortunately,
weakly nonlinear Faraday waves have a large correlation length ξ and extremely
large experiments would be required to study spatial effects of three-wave coupling.

Further above onset (ε > 1), the surface becomes turbulent and develops a
continuous energy spectrum. As the main energy transfer is still through three-
wave interaction and because the dissipation is small, the turbulent state is thought
to be a manifestation of weak turbulence (Zakharov, L’vov & Fal’kovich 1992). It is
also here that a big experiment may help to overcome finite-size effects.

We are indebted to Wim van Saarloos who pointed out the importance of the
correlation length ξ in an early stage of this project. We also thank Gerald Oerlemans
for technical assistance. Financial support by the ‘Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO)’ and by ‘Stichting Fundamenteel Onderzoek
der Materie (FOM)’ is gratefully acknowledged.
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